Properties of Matrix Orthogonal Polynomials via their Riemann–Hilbert Characterization

نویسندگان

  • F. Alberto GRÜNBAUM
  • Manuel D. DE LA IGLESIA
چکیده

We give a Riemann–Hilbert approach to the theory of matrix orthogonal polynomials. We will focus on the algebraic aspects of the problem, obtaining difference and differential relations satisfied by the corresponding orthogonal polynomials. We will show that in the matrix case there is some extra freedom that allows us to obtain a family of ladder operators, some of them of 0-th order, something that is not possible in the scalar case. The combination of the ladder operators will lead to a family of second-order differential equations satisfied by the orthogonal polynomials, some of them of 0-th and first order, something also impossible in the scalar setting. This shows that the differential properties in the matrix case are much more complicated than in the scalar situation. We will study several examples given in the last years as well as others not considered so far.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal behavior for averages of characteristic polynomials at the origin of the spectrum

It has been shown by Strahov and Fyodorov that averages of products and ratios of characteristic polynomials corresponding to Hermitian matrices of a unitary ensemble, involve kernels related to orthogonal polynomials and their Cauchy transforms. We will show that, for the unitary ensemble 1 Ẑn | detM |2αe−nV dM of n×n Hermitian matrices, these kernels have universal behavior at the origin of t...

متن کامل

Strong asymptotics of Laguerre-type orthogonal polynomials and applications in random matrix theory

We consider polynomials orthogonal on [0,∞) with respect to Laguerre-type weights w(x) = xe, where α > −1 and where Q denotes a polynomial with positive leading coefficient. The main purpose of this paper is to determine Plancherel-Rotach type asymptotics in the entire complex plane for the orthonormal polynomials with respect to w, as well as asymptotics of the corresponding recurrence coeffic...

متن کامل

6 Ju n 20 08 LECTURES ON RANDOM MATRIX MODELS . THE RIEMANN - HILBERT APPROACH PAVEL

This is a review of the Riemann-Hilbert approach to the large N asymptotics in random matrix models and its applications. We discuss the following topics: random matrix models and orthogonal polynomials, the Riemann-Hilbert approach to the large N asymptotics of orthogonal polynomials and its applications to the problem of universality in random matrix models, the double scaling limits, the lar...

متن کامل

A Riemann-hilbert Problem for Skew-orthogonal Polynomials

Abstract. We find a local (d + 1)× (d + 1) Riemann-Hilbert problem characterizing the skew-orthogonal polynomials associated to the partition function of the Gaussian Orthogonal Ensemble of random matrices with a potential function of degree d. Our Riemann-Hilbert problem is similar to a local d × d RiemannHilbert problem found by Kuijlaars and McLaughlin characterizing the bi-orthogonal polyno...

متن کامل

Orthogonal trigonometric polynomials: Riemann-Hilbert analysis and relations with OPUC

Abstract. In this paper, we study the theory of orthogonal trigonometric polynomials (OTP). We obtain asymptotics of OTP with positive and analytic weight functions by Riemann-Hilbert approach and find they have relations with orthogonal polynomials on the unit circle (OPUC). By the relations and the theory of OPUC, we also get four-terms recurrent formulae, ChristoffelDarboux formula and some ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011